01,2,3,4,5,6,7, dan seterusnya. Bilangan Rasional. Yang dinamakan bilangan atau angka rasional adalah semua bilangan baik itu bilangan bulat tunggal "m" atau bilangan yang dapat diekspresikan dalam berbentuk m/n dimana m dan n adalah interger dan n bukan merupakan bilangan nol. Jika n bernilai 1 maka bilangan rasional tersebut adalah bilangan bulat dan jika n selain angka 1 maka
oWj5SFI. PembahasanJawaban yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai 0 p ′ = 0 Perhatikan perhitungan berikut ini! 3 m − n n ​ = = ​ 60 3 m − 60 ​ Substitusi n pada persamaan , diperoleh p ​ = = ​ m 2 + n 2 m 2 + 3 m − 60 2 ​ Nilai minimum tercapai saat p ′ 2 m + 2 ⋅ 3 m − 60 ⋅ 3 2 m + 6 3 m − 60 2 m + 18 m − 360 20 m − 360 20 m m ​ = = = = = = = ​ 0 0 0 0 0 360 18 ​ Sehingga, nilai minium dari yaitu p ​ = = = = = = ​ m 2 + 3 m − 60 1 8 2 + 3 18 − 60 2 324 + 54 − 60 2 324 + − 6 2 324 + 36 360 ​ Oleh karena itu, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai Perhatikan perhitungan berikut ini! Substitusi pada persamaan , diperoleh Nilai minimum tercapai saat Sehingga, nilai minium dari yaitu Oleh karena itu, jawaban yang benar adalah C.
Dua buah bilangan bulat a dan b dikatakan relatif prima jika PBBa, b = 1. Contoh i 20 dan 3 relatif prima sebab PBB20, 3 = 1ii 7 dan 11 relatif prima karena PBB7, 11 = 1iii 20 dan 5 tidak relatif prima sebab PBB20, 5 = 5 ≠ 1 Dikaitkan dengan kombinasi linier, jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga ma + nb = 1 Contoh Bilangan 20 dan 3 adalah relatif prima karena PBB20, 3 = 1 Atau dapat ditulis 2 20 + –13 3 = 1 m = 2, n = –13 Akan tetapi, 20 dan 5 tidak relatif prima karena PBB20,5 = 5 ≠ 1 sehingga 20 dan 5 tidak dapat dinyatakan dalam m 20 + n 5 = 1 Materi Lengkap Silakan baca juga beberapa artikel menarik kami tentang Teori Bilangan, daftar lengkapnya adalah sebagai berikut. Tonton juga video pilihan dari kami berikut ini
PembahasanIngat, Penjumlahan pecahan bentuk aljabar Diketahui jika m dan n adalah bilangan bulat positif m 1 ​ + n 1 ​ = 12 5 ​ m 1 ​ + n 1 ​ mn n + m ​ 5 mn 5 mn 5 mn − 12 m m 5 n − 12 m ​ = = = = = = = ​ 12 5 ​ 12 5 ​ 12 n + m 12 n + 12 m 12 n 12 n 5 n − 12 12 n ​ ​ Selanjutnya, kita menentukan nilai dari m yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif n Misal n = 3 ⇒ m = 5 n − 12 12 n ​ = 5 3 − 12 12 3 ​ = 15 − 12 36 ​ = 3 36 ​ = 12 Misal n = 4 ⇒ m = 5 n − 12 12 n ​ = 5 4 − 12 12 4 ​ = 20 − 12 48 ​ = 8 48 ​ = 6 ►Menghitung nilai dari m 2 + n 2 yang terbesar Untuk m = 12 dan n = 3 ⇒ m 2 + n 2 = 1 2 2 + 3 2 = 144 + 9 = 153 Untuk m = 6 dan n = 4 ⇒ m 2 + n 2 = 6 2 + 4 2 = 36 + 16 = 52 Dengan demikian, nilaidari m 2 + n 2 yang terbesar adalah 153 Oleh karena itu, jawaban yang benar adalah B .Ingat, Penjumlahan pecahan bentuk aljabar Diketahui jika dan adalah bilangan bulat positif Selanjutnya, kita menentukan nilai dari yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif Misal ⇒ Misal ⇒ ►Menghitung nilai dari yang terbesar Untuk ⇒ Untuk ⇒ Dengan demikian, nilai dari yang terbesar adalah Oleh karena itu, jawaban yang benar adalah B.